
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 124
Volume 2, Issue 1, February 2011

Performance Analysis of Parallel Mining for

Association Rules on Heterogeneous System

Rakhi Garg
1
, P.K.Mishra

2

1Computer Science Section, MMV, Banaras Hindu University,
2Department of Computer Science, Banaras Hindu University,

Varanasi-221005, India

{rgarg, mishra}@bhu.ac.in

Abstract: Association Rule Mining plays an important role in

predicting business trends those can occur in near future because it

finds the hidden relationships among items in the transactions.

Several sequential algorithms have been developed for finding

maximal frequent itemsets and generating association rules. Due to

advent of high storage devices large database can be stored. Parallel

algorithms are very promising to mine these huge databases. Par-

MaxClique, a parallel association rule mining algorithm is

developed, uses static load balancing. In this paper we propose a

simple parallel algorithm for association rule mining on

heterogeneous system with dynamic load balancing based on Par-

MaxClique algorithm. We compare our algorithm with the existing

one for homogeneous environment and observed that the execution

time gets reduced dramatically.

Keywords: Parallel association rule mining, heterogeneous system,

Par-MaxClique algorithm

1. Introduction

Most of the parallel association rule mining algorithm

developed so far uses static load balancing for homogeneous

systems [12]. In static load balancing the job is initially

partitioned among the homogeneous processors using some

heuristics. There is no data movement among the processors

during execution.

Moreover, if we apply the parallel algorithm developed for

homogeneous system to heterogeneous environment, it will

again leads to significant performance deterioration [1].

Since in homogeneous system there is an equal distribution

of job among the processors of the same speed, uses static

load balancing technique whereas heterogeneous system has

processors of different speeds in which one completes job

earlier than the other due to speed mismatch [4]. The high

speed processor executes the assigned job quickly and sits

idle while low speed processor is still busy with the assigned

job that degrades the performance of the system. To utilize

system processors efficiently and enhance the performance

we design an algorithm that during execution checks the load

of the processor and on the basis of which it moves the job

from heavy loaded processor to least loaded one so that no

processor sits idle till the completion of the whole jobs in a

system.

In our algorithm, initially, the same number of jobs assigned

to all the processors in a cluster by the scheduler using the

same heuristics as in the homogeneous system. Since the

processing speeds of the processors in the cluster are

different so algorithm first finds out the fastest processor in

the cluster and also computes the execution time to complete

the execution of all the jobs assigned to it. After that it will

compute the total number of complete and incomplete jobs of

all the processors in the system and maintain load value of

each processor in the cluster at the scheduler end i.e. the host.

Then the load value of processors in a cluster are compared

and the job is moved from the heavy loaded processor to the

least loaded one and thus balances load dynamically in a

cluster. A linked list containing the load values of all

processors in a cluster are maintained at the scheduler end

that gets updated during the completion of all the jobs

assigned to the fastest processor. In this way load balancing

becomes dynamic and involves data movement among the

processor only when there is no communication overhead to

enhance the performance of the system.

Section 2 briefly explains Par-MaxClique algorithm and

focuses on the related work done. In section 3 we explain the

functioning of the algorithm designed by us. Our

experimental study is presented in section 4 and our

conclusion in section 5.

2. Par-MaxClique Algorithm & Related Work

2.1 Par-MaxClique Algorithm

M. Zaki, Parathasarathy, Oghihara and Li [2] developed Par-

MaxClique algorithm that gives more accurate frequent

itemsets. It uses clique clustering which is more accurate than

equivalence class clustering [2],[7]. Here, the database is

vertically partitioned and hybrid search is applied on it to

generate the longest frequent itemsets by using the (L2)

frequent 2-itemsets and some non frequent itemsets. The

items are organized in a subset lattice search space, which is

decomposed into small independent chunks or sub-lattices,

which can be solved in memory. Efficient lattice traversal

techniques are used, which quickly identify all the frequent

itemsets via simple tid-list intersections [2].

Basically Par-MaxClique algorithm is divided into three

phases i.e. initialization phase, asynchronous phase and final

reduction phase [2],[7]. It generates clusters from L2 using

uniform hypergraph cliques and partition the clusters and the

tid-list among the processors in the very first phase called the

initialization phase. After that in the next phase called the

asynchronous phase, the frequent itemsets are computed

independently by each processors from the cliques assigned

to it. Finally, the last phase i.e. the reduction phase produces

the aggregate results and outputs the associations between the

frequent itemsets.

EXAMPLE OF PAR-MAXCLIQUE ALGORITHM

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 125
Volume 2, Issue 1, February 2011

Let database contains A,C,D,T and W four itemsets and 6 transactions are:-

Tid-list is computed as: T(A) =

{1,3,4,5}; T(C)={1,2,3,4,5,6};

T(D)={2,4,5,6} and

T(W)={1,2,3,4,5}. During the

initialization phase the tid-list is

communicated among the

processors and support counts for

2-itemsets are read. e.g. support

count for AC ={1,3,4,5} = 4 which is counted by the intersection of the tid

list of A and C. Similarly the support counts of AD, AT, AW, CD, CT, CW,

DT, DW and TW are 2,3,4,3,4,4,3,2,3 and 3 respectively. Let us assume

that minimum support = 3 so AD and DT will be discarded.

Frequent 2- itemsets are :- Equivalence classes are:-

AC,AT,AW,CD,CT,CW,DW,TW [A]: C T W

 [C]: D T W

 [D]: W

 [T]: W

By applying the hypergraph clique for clustering to L2, the set of potential

maximal cliques per equivalence class are generated.

Generated Maximal cliques per class:-

[A]: ACTW, ACW, ATW, ACT

[C]: CDW, CTW

Maximal cliques for equivalence class A

Figure 1: Equivalence class and Uniform Clique clustering

[10]

Here, two cliques and equivalence class are generated which

are distributed on the processors to achieve equal load

balancing. Each processor independently computes the

maximal frequent itemsets which are used in association rule

generation in the last phase of the algorithm.

Par-MaxClique algorithm uses the static load balancing

technique with some heuristics for equal balance among the

processors in the homogeneous system. This is far from

reality because a database server has multiple systems with

different configurations and speeds. If this algorithm is used

there then it will degrade the performance of the system. This

demands the dynamic load balancing schemes.

We have developed an algorithm for parallel mining of the

association rules for such heterogeneous system that uses

dynamic load balancing technique and enhances the system

performance by reducing the execution time.

2.2 Related Work

Several parallel algorithms for association rules have been

proposed in the literature. The most known parallel algorithm

is Count Distribution (CD), Data distribution and Candidate

Distribution; proposed by Rakesh Agrawal and J. Shafer [4],

[5], [6]. Among these CD is the most promising one which

minimizes the communication overheads but utilize memory

less efficiently than DD.

The FDM and FPM algorithms are the enhanced versions of

CD [3]. In FDM, two rounds of the communications are

required in each iteration one for computing the global

support and the other for broadcasting the frequent itemsets.

FPM is more efficient than FDM in communication which

broadcast local supports to all processors which is

determined by the candidate size as in CD [3]. Thus for small

minimum support, the communication cost could be very

high at some passes where the candidate set is large.

Par-MaxEclat and Par-MaxClique is parallel MFI (maximal

frequent itemsets) mining algorithm proposed which are

parallel versions of MaxEclat and MaxClique respectively.

These algorithms distribute over the processor in the system

the cluster of the generated potential maximal frequent

itemsets. These algorithms are implemented on dedicated

homogeneous system which uses static load balancing

technique. Par-MaxClique algorithm outperforms CD

algorithm because it utilizes the aggregate memory of the

parallel system, decouples the processors right in the

beginning by repartitioning the database so that each

processor can compute independently, use vertical database

layout which clusters the transactions containing an itemset

into tid-list without scanning the database and computes the

frequent itemsets by simple intersections on two tid-lists

without having an overhead of maintaining complex data

structures[2].

Problem here is that although Par-MaxClique algorithm

outperforms but it has limitation that it is only implemented

for homogeneous system that uses static load balancing

technique. It won’t take care of fault tolerance i.e. what

happens if one of the processor in the system fails, how the

jobs assigned to it gets executed and also what happens in the

case of heterogeneous system which have processors with

speed mismatch. If it used in heterogeneous system with no

check on the load factor of the processor maintained during

execution phase then it might happen the processors with

high speed may sit idle after completing the execution of all

the jobs assigned to it while others with less speed are still

involved in the processing work. This won’t utilize the

processor to their maximum extent. Hence an algorithm

which uses dynamic load balancing technique is needed for

proper utilization of all the processors in the cluster.

 Load Balancing FP-Tree (LFP-tree)

algorithm is proposed by Kun-Ming Yu, Jiayi Zhou and Wei

Chen Hsiao based on FP-tree structure that divides the item

set for mining by evaluating the tree’s width and depth and

proposed a simple and trusty calculate formulation for

loading degree [8]. But it has limitation of maintaining the

complex tree structure.

Masaru Kitsuregawa and Takahilus Shintani, Masahisa

Tamura and Iko Pramudiono, proposed Parallel Data Mining

on large scale PC Cluster, the dynamic load balancing

methods for association rule mining for heterogeneous

system [9] which uses candidate migration and transaction

migration. Initially if load is not balanced after candidate

migration then it applies the transaction migration which is

costly but more effective for strong imbalance.

3. Proposed Algorithm

In our algorithm, the hypercliques of frequent 2-itemsets

which are considered as jobs are equally divided among the

processors of the system for having equal load balance as

done in the homogeneous system. During execution we find

out the processor which has completed the execution of all

the jobs assigned to it i.e. the fastest processor of the cluster.

Then we arrange the processors in the decreasing order

according to their respective speeds and compute the number

of complete and incomplete jobs of every processor at a time

when fastest processor have completed the execution of all

jobs assigned to it. After that the scheduler queue which is

Transaction

s

A C D T W

 T1 1 1 0 1 1

T2 0 1 1 0 1

T3 1 1 0 1 1

T4 1 1 1 0 1

T5 1 1 1 1 1

T6 0 1 1 1 0

C W
W C

T W
T

C

A T
A A A

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 126
Volume 2, Issue 1, February 2011

P0 P1 P2 P3

P0 P1 P2

P3

maintained at the host to which numbers of processors are

attached and contains the load value i.e. the number of

incomplete jobs of every attached processor gets updated.

After that the data is moved from heavy loaded i.e. the

slowest processor to the least loaded one i.e. the fastest

processor in the cluster only if the remaining execution time

of the job assigned to the slowest processor is more than that

of its execution time at the fastest processor. This takes care

of communication overhead. Since we have distributed the

hypercliques among the processors in the cluster for

generating the maximal frequent itemsets (MFI), it might

happen that the fastest processor have generated it at a time

when others are involved in generating MFI from one of the

cliques from the cluster of cliques assigned to it. In that case

the remaining untouched cliques from the list of a given

processor will move to the fastest processor for computation.

This will engage all the processors of various speeds in the

cluster which cannot be done by adopting the algorithm

designed for the homogeneous system. In this way every

processor in the cluster gets utilized to its maximum extent

and also reduces the total execution time. e.g. Consider a

case where (frequent 2-itemsets) L2 = {12, 13, 14, 15, 23, 24,

25, 34, 35, 45} and two Processors Po and P1; where Po is

faster than P1. For having equal load balance the clique of [1]

get assigned to P0 while [2] and [3] get assigned to P1. It

might happen that P0 have generated all the MFI from clique

[1] at a time when P1 is busy in generating from [2] and [3]

remained untouched. In that case [3] gets moved to P0.

Interconnection Network

 n0 n1 n2 n3 n0 n1 n2 n3 n0 n1 n2 n3

Po P1 P2 P3 P0 P1 P2 P3 P0 P1

P2 P3

Database Database Database

H1, H2 and H3 are the host where the scheduler queue is maintained. n0, n1,

n2 and n3 are the load factor of P0, P1, P2 and P3. Here, the database of tid-

list is initially equally partitioned and the support count of all L2 are

available.

Each processor say P0, P1, P2 and P3 computes the maximal frequent

itemsets from the cluster assigned to them.

Figure 2: Working of algorithm in Heterogeneous system

Table 1: Pseudo code for parallel association rule mining

algorithm for heterogeneous environment
Begin

/* Initialization Phase */

1. Generate L2 from 2-itemset support counts

2. Generate clusters from L2 using uniform hypergraph cliques

3. Partition clusters among the processors

4. Scan local database partition

5. Transmit relevant tid-list to other processors

6. Received tid-list from other processors.

7. First, we compute the job queue and linked list of each processor

and scheduler respectively. Initially, all processor have the same

load value since jobs are equally distributed among the processors

as in Par-MaxClique algorithm for homogeneous system.

/* Asynchronous Phase */

8. For each assigned cluster C2, compute Frequent Itemsets

9. During execution, each processor updates its job queue and the

linked list at the scheduler is also gets updated accordingly.

/* Communication OR Complete and offer Phase */

10. If job queue of all processors are empty then stop

11. else

The scheduler compares the load value of all the processors within

the cluster and if any difference is found then perform the following

:-

(i) Job from heavy loaded processor say Pi is taken and gets

assigned to least loaded processor say Pj.

(ii) Job queues of the Pi and Pj are adjusted accordingly.

(iii) The link list at the scheduler is also adjusted accordingly.

12. Go to asynchronous phase i.e. step 8.

/* processing completes at each processor and then moves to

reduction phase that involves 13.*/

13. Aggregate Results and Output Associations

14. STOP

4. Analysis of proposed algorithm

We have designed a simulator in C language that reads

number of processor in the system, there processing speed

and the number of jobs to be executed by the system. The

execution time of each of the job is randomly generated. The

major difference between the homogeneous and

heterogeneous system is observed at the Communication OR

Complete and offer Phase of the proposed algorithm where

dynamic allocation of jobs are done in heterogeneous system

and static in case of homogenous system. Initially our

simulator distributes the jobs equally among all the

processors in the system so that work load remains same at

every processor and then computes the actual execution time

of each processor as well as the computation time of all the

jobs assigned to it for doing dynamic allocation. In the case

of heterogeneous system the actual execution time of each

processor is different whereas it remains same in the case of

homogeneous system. So, simulator will list out the total

number of incomplete jobs allocated to each processor at the

time when the fastest processor has completed the execution

of all the jobs assigned to it. On the basis of that the entry at

the scheduler that keeps track of the work load factor of each

of the processor in the system will be updated. After that

simulator compares the remaining execution time of the

incomplete jobs of each processor with its execution time at

the fastest processor and if it is more then only the data

movement will be done from that processor to the fastest

processor otherwise not. In this way the fastest processor is

not overloaded and this process repeats till all the jobs

complete its execution. By doing so it will also take care of

fault tolerance because if any of the processor is not

completing its execution then after comparing it with the

processor arranged in the decreasing order of their

processing speed the job will be assigned to the one that

involves in processing. Not only this, it also does the equal

distribution of jobs among the processors in the system while

H1 H2 H3

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 127
Volume 2, Issue 1, February 2011

doing dynamic allocation so that no processor sits idle. We

can observe it very well in figure 7.

We have executed algorithm in heterogeneous system having

four processors with processing speeds 2.2GHz, 3.2GHz,

3.6GHz and 3.8GHz for the number of jobs executed ranging

between 200 and 15,000 and also the same in homogeneous

system with four processors with processing speed 2.2GHz,

3.2GHz, 3.6GHz and 3.8GHz respectively and obtain results

shown in figure 3,4,5 and 6.

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

Number of Jobs Executed

E
x
e
c
u
ti
o
n
 T

im
e
 o

f
jo

b
s

Homogeneous System with

processor speed=2.2GHz

Homogeneous System with

processor speed=3.2GHz

Homogeneous System with

processor speed=3.6GHz

Heterogeneous System

Figure 3

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
4

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Jobs Executed

E
x
e
c
u
ti
o
n
 T

im
e
 o

f
jo

b
s

Homogeneous System with

processor speed =2.2GHz

Homogeneous System with

processor speed=3.2GHz

Homogeneous System with

processor speed=3.6GHz

Heterogeneous System

Figure 4

0 5000 10000 15000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Jobs Executed

E
x
e
c
u
ti
o
n
 T

im
e
 o

f
jo

b
s

Homogeneous System with

processor speed=2.2GHz

Homogeneous System with

processor speed=3.2GHz

Homogeneous System with

processor speed=3.6GHz

Heterogeneous System

Figure 5

Figure 6

In figure 6, Series1, Series2 and Series3 represents

homogeneous system having 4 processors with processing

speed 2.2GHz, 3.2GHz and 3.8GHz respectively, Series 4

showing heterogeous system having 4 processors with

processing speed 2.2GHz, 3.2GHz, 3.6GHz and 3.8GHz.

It is observed from figure 2 and 3 that the execution time

reduces dramatically when the number of jobs increases

above 10000 as compared to it range between 200 and 4000.

It means that as the number of jobs increases the execution

time reduces. Thus, we can say that the performance of the

heterogeneous system which uses dynamic load balancing is

much better than that of homogeneous system that uses static

load balancing technique. Moreover, we can save cost also

by having some low speed processors because instead of

having all high speed processors, the same performance can

be achieved by having a combination of low and high speed

processors in the cluster. Not only is this it also seen that the

high performance is obtained in the heterogeneous system as

compared to the homogeneous with the involvement of the

same number of processors in the data movement which is

shown in figure 7.

5. Conclusion

In this algorithm, we have reduced the execution time.

Moreover, the same performance can be achieved by the

heterogeneous system with a combination of low and high

speed processors as in homogeneous system with same

number of high speed processors. It means we can utilize the

low speed processors also for having the desired

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 128
Volume 2, Issue 1, February 2011

performance. Hence the cost of having all high speed

processors can be saved. Not only this, our algorithm also

takes care of fault tolerance in the cluster. Also, it has good

features of the Par-MaxClique parallel association rule

mining algorithm for homogeneous environment which

outperforms count distribution, data distribution and

candidate distribution algorithm for parallel association rule

mining. It enhances the performance of the heterogeneous

system by having dynamic load balancing techniques.

 In future, we try to perform dynamic load balancing in

between the clusters. If the graph is too dense and if support

decreases and transaction size increases it will affect the edge

density and leads dense graph resulting in large cliques with

significant overlap among them. We will try to handle this

problem in our future work.

6. References

[1] Masahisa Tamura and Masaru Kitsuregawa, “Dynamic

Load Balancing for Parallel Association Rule Mining on

Heterogeneous PC Cluster System”, Proceedings of the 25
th

VLDB Conference, Edinburgh, Scotland, pp. 163, 1999.

[2] Mohammed J. Zaki, Srinivasan Parthasarthy, Mithsunori

Ogihara and Wei Li, “Parallel Algorithms for Discovery of

Association Rules”, Data Mining and knowledge Discovery,

© Kluwer Academic Publishers, pp. 360, 364, 1997.

[3] Soon M. Chung, Congnan Luo, “Efficient mining of

maximal frequent itemsets from databases on a cluster of

workstations”, © Springer-Verlag London Limited 2007 pp.

359-391, Published online: 12 December 2007.

[4] M. J. Zaki, “Parallel and Distributed Association Mining:

A Survey”, Concurrency, IEEE, Volume 7, Issue 4, pp. 2-3,

10-13, Oct-Dec. 1999.

[5] R. Agrawal and J. Shafer, “Parallel mining association

rules”, IEEE Transaction On Knowledge and Data

Engineering, Volume 8, Issue 6, 8(6): pp. 962-969,

December 1996.

[6] E-H. Han, G. Karypis and Vipin Kumar, “Scalable

parallel data mining for association rules”, Proceedings of

ACM SIGMOD Conf. Management of Data, pp. 279-284,

May 1997.

[7] Mohammed J. Zaki, “Parallel and Distributed Data

Mining: An Introduction”, C.-T. Ho (Eds.): Large-Scale

Parallel Data Mining © Springer-Verlag Berlin Heidelberg,

LNAI 1759, pp. 9, 2000.

[8] Kun-Ming Yu, Jiayi Zhou and Wei Chen Hsiao, “Load

Balancing Approach Parallel Algorithm for Frequent Pattern

Mining”, V. Malyshkin (Ed.): PaCT 2007. © Springer-

Verlag Berlin Heidelberg. LNCS 4671, pp. 623–631, 2007.

[9] Masaru Kitsuregawa and Takahilus Shintani, Masahisa

Tamura and Iko Pramudiono, “Parallel Data Mining on large

scale PC Cluster”, H. Lu and A. Zhou (Eds.): WAIM 2000,

© Springer-Verlag Berlin Heidelberg, LNCS 1846, pp. 15–

26, 2000.

[10] Rakhi Garg and P. K. Mishra ,“Parallel Association

Rule Mining on Heterogeneous system”, research papers

published in an International Journal of Computer

Application (0975 – 8887) , Volume-1, No. -14, pp. 87-91;

Feb 2010.

[11] Jochen Hipp, Ulrich Gauntzer, Gholamreza

Nakhaeizadeh,”Algorithms for Association Rule Mining-A

General Survey and Comparison”, SIGKDD explorations

copyright © 2000, ACM SIGKDD, Volume 2, Issue 1, pp.

58-61, July 2000.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4434

